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Band Structure of Polymers with Conjugated Bonds: II. Band Structure of p-Polyphenyls
It is shown that the energy gap for any arbitrary homonuclear alternant system is given by the

expression _ __
zJEoo - VA corr M.I geom

where zdCorr is the correlation correction, and Zlgeom and Zltop are factors respectively determined 
by the geometry and the topology of the molecule.

For the infinite p-polyphenyls the correlation correction Zlcorr equals to zero; this means that 
the width of the energy gap depends only on the topology and geometry of the system.

Die p-Polyphenyle gehören zu den wenigen Syste­
men, bei denen die Bestimmung der Energiegaps im 
optischen Spektrum der unendlichen Polymeren 
durch die Extrapolation experimenteller Daten als 
zuverlässig gilt. Anderseits kann man ihre Molekül- 
orbitale in analytischer Form darstellen. Dies gestat­
tet in allgemeiner und durchsichtiger Form die 
Untersuchungen derjenigen Faktoren, welche das 
Energiegap bestimmen: Elektronenkorrelation, Mo­
lekülgeometrie und Topologie. Die vorliegende Ar­
beit setzt sich dies zum Ziel.

Die Extrapolation der experimentellen Daten für 
den längstwelligen (p-Band) Singulett-Übergang bei
den linearen p-Polyphenylen ergibt für die Breite 

< - © - ) „

des Energiegaps (AEloo) Werte, die von der Größen­
ordnung 3,6 — 3,8 eV sind. Wirth 1 und Suzuki 2 ge­
ben für AEIX) die Werte 3,61 eV bzw. 3,66 eV an. 
Mit den Daten von Gillam und Hey 3 (s. Tab. 1) er­
geben sich für A die Werte 3,83 eV (Hexan) bzw. 
3,71 eV (Chloroform).

Es wurde gezeigt5, daß das Energiediagramm der 
cyklo-p-Polyphenyle, mit 2 m Benzolringen

a Erste Mitteilung: Z. Naturforsch. 30a, 1308 [1975]. 
b Ständige Anschrift: Institut für organische Chemie der 
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zwölf essentiel nicht entartete HMO enthält. Außer 
diesen treten auf:

ek = a ± ß a ;

jedes dieser MO ist 2(m — l)-fach entartet; insge­
samt also (4m —4) Niveaus;
ek = a ± 1/2 [ßa + ßc cos ojk

±  V {ßa — ßc cos 03k)2 + 8 ßb2] , (1) 
0JA.= (7i/m)k;

jedes dieser Niveaus ist zweifach entartet: jeder 
dieser 4 Ausdrücke ergibt mit k = 1, 2, 3 , . . . ,  (m — 1) 
einen Satz von (m — 1) zweifach entarteter Niveaus, 
daher insgesamt 8 (m — 1) Niveaus.

Tab. 1. Energien AE (in eV) des Singulett-Überganges 
(p-Band) für p-Polyphenyle 3.

n AEa zl£b

0 5,04 4,93
1 4,49 4,43
2 4,24 4,13
3 4.00 4.00
4 3.90 3,91
oo 3,83c 3,71 c

a Lösungsmittel: Hexan 
b Lösungsmittel: Chloroform 
c Extrapoliert mittels
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Bei den weiter unten durchgeführten Grenzbe­
trachtungen (m —> oo ) werden nur die entarteten 
Niveaus betrachtet.

Koutecky und Zahradnik6 erhalten für die MO- 
Energien der linearen unendlichen p-Polyphenyle 
den Ausdrude (ßa = ßb = ßc)

ek = a ± ß ] /3 ± 2 1/1 + cos ojk , 0 £ c o k <^2 n .
(2)

Wenn man für die cyklo-p-Polyphenyle ideale 
Geometrie, d. h. alle Bindungslängen gleich und das 
Molekül als planar annimmt (ßa = ßb = ßc = ß ) , so 
sind die Zonen der bindenden und der antibindenden 
MO auch für m —>~oo, durch ein Energiegap getrennt, 
das nur durch die Molekültopologie bestimmt wird. 
Nach (1) ergibt sich dieses Energiegap zu

AEvo = Atov = 2(V%—\)\ß \  = 0,828 \ß \. (3)

Für die linearen p-Polyphenyle erhält man aus (2) 
denselben Wert für Atop . Hierdurch unterscheiden 
sich diese Systeme von anderen linearen und quasi­
linearen Verbindungen, wie z. B. Polyenen7 und 
Polyacenen 7' 8' 9, bei denen die Topologiekomponen- 
te von AEX gleich Null ist.

Wenn man die reale Geometrie des Moleküls be­
rücksichtigt, die durch die entsprechenden Werte der 
Resonanzintegrale ausgedrückt werden kann

ßa = ß , ßb = ß { \~ d b), ßc = ß ( l - d c), (4)

so erhält man für das Energiegap den Ausdruck:
AE00= - 2 \ ß \  + öc \ß\__________

+ 2V 2 \ß \ 1/(1 - d b)2 + 1/8(5,2 = 2 ( V 2 - l ) \ß \

— -̂ top + ĝeom • (5)

Falls db = dc = 0, wird Ageom = 0; bei kleinen Wer­
ten von Sb und Sc folgt

Ageom~ ( d c- 2 V 2 d b) \ß l .  (6)

Die Gl. (5) kann ohne besondere Schwierigkeiten 
für beliebige alternierende Systeme verallgemeinert 
werden. Wenn man die Energien des höchsten bin­
denden und des niedrigsten antibindenden HMO's 
mit et bzw. — et bezeichnet und das Molekül ideale 
Geometrie besitzt, erhält man

AEX = 2 et = Atop .

Bezeichnet man mit er und — er die Energien der 
Grenzorbitale bei reeller Geometrie, und setzt 
er = et + eg , dann folgt

AE00 = 2er = 2et + 2eg =Atop + Ageom. (7)

In den Arbeiten9' 10 wurde gezeigt, daß beim Bin­
dungsabstand /?0 = 1,40Ä der effektive Wert des 
Resonanzintegrals ß0 in dem Intervall

-  3,35 eV ß0 {R0 = 1,40 Ä) ^  -  4,13 eV (8)

und zwar näher bei — 3,35 eV als bei — 4,13eV 
liegt.

Falls die p-Polyphenyle ideale Geometrie besitzen 
und alle Bindungsabstände den Wert 1,40 Ä anneh­
men (Ra = Rb = Rc = R0 = 1,40 Ä), so liegt nach (3) 
und (8) der topologische Beitrag zu Energiegap im 
Intervall

2,77 eV <: Atop £  3,42 eV . (9)

Nimmt man an, daß die Bindungslängen in p-Poly- 
phenylen nicht sehr von denen in Diphenyl11 abwei­
chen, d. h. setzt man Ra = Rb = 1,40 Ä und Rc = 
1,48 Ä [s. Gl. (27) u. (28)], erhält man7-8

ßc = ßa'e*P { (Ra — /?c)/0,3106} = 0,773 ßa (10)
bzw. <3f = 0,227. Mit diesen Werten kann der geo­
metrische Beitrag zum Energiegap cyclischer p-Poly­
phenyle mit Hilfe von (5) und (8) abgeschätzt 
werden zu

0,76 eV <; Ageom <; 0,94 eV . (11)

Somit ergibt sich aus (9) und (11) für das Energie­
gap

3,53 eV ^  Atop + Ageom ^  4,36 eV . (12)

Bei Berücksichtigung der Winkel zwischen den Ebe­
nen der Benzolringe: © = 420 11, kann das Reso­
nanzintegral ßc mittels der Beziehung

ßc = 0,773 ßa cos 4 2°=  0,574 ßa (10')

berechnet werden. Dann ergibt sich nach (8) (<5C =
0,426)

1,43 eV zlgeom <; 1,76 eV (11')

bzw.
4,20 eV ^  Ageom + Atop £  5,18 eV . (12')

Aus dem experimentellen Wert (3,6 — 3,8 eV) und 
Gl. (12), (12') folgt in Übereinstimmung mit frü­
heren Befunden 9-10, daß ß0 näher bei — 3,35 eV als 
bei -4 ,1 3  eV liegt.

In den bisherigen Betrachtungen wurde die Elek­
tronenkorrelation, die bei manchen Mehrelektronen­
systemen, z. B. bei den Polyacenen 10, eine wesent­
liche Rolle spielt, nicht berücksichtigt. In den Arbei­
ten 12' 13 wurde gezeigt, daß die MO-Energien Ek 
(gleich für Orbitale mit Spin ot(|) und
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Eka = Ej/ = Ek) für beliebige homonucleare alter­
nierende Moleküle nach der erweiterten Hartee-Fock- 
Methode(EHF)-AMO-Variante durch den folgenden 
Ausdruck gegeben sind:

E k = V W + e k 2. (13)
Darin sind:

MO-Energien in Einelektronnäherung (konven­
tionelle HF-Methode oder Hückel-Methode) 

y Einzentren-Coulomb-Integral

9 ^ (2 )7= (< P fr (D

ö Korrelationskorrektur, die aus der Gleichung

7N/2

& = i VÖ2 72 + e,;2
(14)

erhalten werden kann (A ist die Gesamtzahl der 
AO).

Aus (7) und (13) resultiert der folgende Aus­
druck für das Energiegap (EHF) :

AEX = 2 V ¥ y 2 + e 2 = V Ä ^ + C ^ m + A ^ ) 2, 
wobei zfcorr = 2 dy die Korrelationskorrektur zu dem 
Wert des Energiegaps darstellt.

Die Gl. (15) ist für beliebige homonukleare alter­
nierende Systeme gültig. Falls Atov = 0, folgt

A Ex = V^corr + A geom • (16)
Dieser Fall ist im Rahmen der EHF-Methode bei den 
Polyenen 14,15 und Polyacenen9 gegeben, bei welchen 
Zltop = 0 ist.

Wenn <5 = 0, gehen die Energien £/,(EHF) in die 
durch die traditionelle HF-Methode erhaltenen Ener­
gien e/,.(HF) über und Gl. (15) kann daher wie 
folgt geschrieben werden

AEX(EHF) = y 4 orr + ,l/^ (H F ) . (15')

In der Näherung von Hubbard 16, welche nur die 
Coulomb-Wechselwirkung am selben Zentrum be­
rücksichtigt,

7 nv= VÖ.

fallen infolge von

ßnv~ 1/2 p/<(. 7ßv ßMv
die HF-MO-Energien mit den HMO-Energien zah­
lenmäßig zusammen.

Die Gl. (16) wurde von Bitchkov, Gorkov und 
Djalochinski17 für die Polyene mit korrekter Be­
rücksichtigung des Potentials abgeleitet. Wie in einer 
nächsten Arbeit gezeigt werden wird, läßt sich (15) 
auch für beliebige homo- und heteronukleare Syste­
me unter Berücksichtigung der Zwei-Zentren Cou­
lomb-Wechselwirkung herleiten.

Die Existenz nichttrivialer Lösungen der Gl. (14), 
<5 4= 0, von denen der Wert der Korrelationskorrektur 
abhängt, wird durch die folgende Bedingung be­
stimmt 12' 1,3:

NJ9
A <  2

A- = 1
7 (17)

Für cyklische p-Polyphenyle folgt mit (1) hieraus

1 2 m /7 < 2 m /|A ! + 4 m 2 1
1 ßa + ßc COS COk + V{ßa-ßc COS C0k)2 + 8 ßb2

+ 4m 2 ßa + ßc COS COk -  V (ßa -  ßc COS COk) 2 + 8 ßb2
(18)

(19)

Mit wachsendem m geht (18) über in

\ßa\ ^ 1 , 1  [V ^{ßblßa)2+l-ßclßaCOSCp2 (\ßA \
y 6 6 jt J 2 (ßb/ßa)2- ß c/ßacoscp r  V y Zerit * 

0
Wenn |ß a \/y ^  (|ßa \/y )crit,
gibt es keine nichttriviale Lösungen (<5 4= 0) und die Korrelationskomponente wird zfcorr = 0.

In Tab. 2 sind die nach (9) berechneten Daten für (\ßa\h')cTit angegeben, die für verschiedene Werte 
ßb/ßa und ßdßa erhalten wurden. Wie aus Tab. 2 zu ersehen ist, hängt der kritische Wert des Quotienten 
! ßa \/y wesentlich von der Geometrie der p-Polyphenyle ab.

Für lineare p-Polyphenyle mit idealer Geometrie folgt aus (2) und (17)
jt/2 .-r/2

M < _ L _
y 3 ti +

d cp +
<\cp

2 ' ] )/3 + 2 cos 2 cp ' ) 1/3 -  2 V? cos 2 cp 
0 0

(20)
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Tab. 2. Abhängigkeit der kritischen Werte (!/2a '//) crit von 
den Zahlenwerten der Verhältnisse ßc/ßa und ßb/ßa•

ßc/ßa ßb/ßa= 1 ßb/ßa=0,9 ßblßa = 0,8

1,2 0,458 0,636 1,540
1,0 0,411 0,519 0,785
0,8 0,379 0,453 0,595
0,6 0,358 0,414 0,506

Die numerische Auswertung der obigen elliptischen 
Integrale ergibt

i\ ß \ /  7) crit = 0,444 . (21)
Mit dem Wert y = 5,4 eV für das Einzentren- 

Coulombintegral 9' 10' 15' 18 erhält man für j ß \/y das 
Intervall

0.620 g  l /» t* .-M 0 A ) | <  0 - 65
7

Sind alle Bindungslängen und damit auch alle Re­
sonanzintegrale untereinander gleich, ergeben sich 
aus (19) für cyklo-p-Polyphenyle bzw. aus (22) für 
lineare p-Polyphenyle die Werte 0,411 und 0,444, 
die kleiner als die zulässigen Werte für j ß \/y, d. h. 
kleiner als 0,620 sind. Gleichung (14) ist dann nur 
durch die triviale Lösung <3 = 0 befriedigt und 
Aeon = 2 dy wird daher Null; die Breite des Energie- 
gaps wird dann nur durch die Topologie des Systems 
bestimmt.

Die Bindungsordnungen für cyklische p-Polyphe­
nyle können durch die bekannte Beziehung

Pi = $e*ßßi
berechnet werden.

Aus dem Ausdruck für die gesamte Jt-Elektronen- 
energie

4 m ß a -  4 m/n f  1/8 ßb2 + (ßa -  ßc cos cp) 2dcp 
0

erhält man

pa = 1/2 -  1/2 n h ß a  -  ßc cos cp) / r  1 dcp , (24)

pö = - 2 /jtfß b R - 'd c p , 
0

(25)

pc = 2/Jl f  (ß a -  ßc COS cp) COS cp R 1dcp, (26) 
0

worin R = ]/8 ßb2 + (ßa -  ßc cos <p)2.

Wenn die Resonanzintegrale untereinander gleich 
sind, ergibt die Berechnung der obigen elliptischen

Integrale die Bindungsordnungen:
Pa = 0,655, Pb = 0,654, pc = 0,291. (27)

Die erhaltenen Bindungsordnungen ergeben folgen­
de Werte für die Bindungslängen (R (Ä) = 
1,517-0,18 p )19:

Ra = 1,40Ä , Rb = 1,40 Ä , Rc= 1,47 Ä, (28)

die sich von den Bindungslängen in Diphenyl11 
nicht wesentlich unterscheiden.

Nimmt man für die cyklo-p-Polyphenyle dieselbe 
Geometrie wie für die Diphenyle (Ra = Rb = 140 Ä, 
Rc = 1,48Ä, 6  = 42°) 11 an und berechnet man 
ßc nach (10'), folgt aus (19) für den kritischen 
Wert (\ßa \/y) crit= 0,355. Da dieser Wert kleiner als 
0,620 ist, besitzt Gl. (14) keine nichttrivialen Lö­
sungen und Acott = 0.

Um den Einfluß der Geometrie und Elektronen­
korrelation auf das Energiegap zu untersuchen, wur­
den numerische Rechnungen für die linearen p-Poly­
phenyle durchgeführt. Auch diesen Rechnungen 
wurde die Geometrie des Diphenyls11 zugrunde gelegt. 
Das Resonanzintegral ßc wurde nach (10') berech­
net. Bei der so ausgewählten Geometrie und diesen 
Parametern, ergeben numerische Untersuchungen, 
für das p-Polyphenyl mit 50 Benzolringen, daß Gl. 
(14) in diesem Fall nur durch die triviale Lösung 
befriedigt wird, d. h. Acorr = 0.

Zusammenfassend kann man sagen, daß das Ener­
giegap der p-Polyphenyle keinen von Null verschie­
denen Korrelationsbeitrag enthält. Die Gl. (14) 
würde nur dann nichttriviale Lösungen <3 = 0 haben, 
wenn ßc/ßa ~ !• Dieser Bedingung entspricht eine 
chinoide Struktur

die zwar in der Literatur oft erwähnt wird (s. 
z. B. 3' 20), der durchgeführten Untersuchung zufolge 
aber nicht als reell gelten kann [s. Gl. (27) und 
(28)].

Die Frage, welchen Einfluß die Geometrie und die 
Elektronenkorrelation auf das Energiegap von ein­
dimensionalen und quasieindimensionalen Systemen 
hat, ist bisher ausschließlich am Beispiel der Polyene 
diskutiert worden 7-14' 15>17' 18' 21~26. In Abb. 1 sind 
weitere Systeme dargestellt, für welche ähnliche Un­
tersuchungen ausgeführt wurden: Polymethin-Strep-
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tocyanine 10 (I), a, o>substituierte Polyene mit ge­
rader C-Zahl18 (II), lineare Polyacene9 (III) und 
hier diskutierte p-Polyphenyle (IV). Alle diese Sy­
steme können als quasi-linear aufgefaßt werden. Die 
Zusammenfassung der bei dieser Verbindungsklasse 
erzielten Ergebnisse führt zu dem folgenden Schluß:

Vernachlässigt man die Effekte der nichtadiabati- 
schen Wechselwirkung und die kollektiven Effek- 
te 27-30, so wird das Vorhandensein eines Energie- 
gaps im optischen Spektrum homonuklearer quasi­
eindimensionalen jr-Elektronensysteme durch Topo- 
logie, Geometrie und Elektronenkorrelation in einer 
für das System charakteristischen Weise bestimmt 
(s. Tabelle 3).

Da bei der Herleitung von (13) und (15) die 
Quasi-Linearität nicht vorausgesetzt wurde, sollte 
diese Schlußfolgerung auch für beliebige homo­
nukleare alternierende Systeme gelten.

Tab. 3. Ausdrücke für das
.-r-System Geometrie AEx (HF) AEx (EHF) Energiegap.

I 0 ^corr

ßs = ßd 0 ■̂ corr
II

V ̂ corr "1" Ageomßs^rßd ĝeom = 2 | ßs~ßd I

ßa = ßb=ßc 0 ACOTT
III ßa^ßb=ßc 0 A'cott

ßa^ßb^rße Ageo m=ßa+ Vßa2+ (ß<b~ßc)2 j/^corr +  ĝeom

ßa=ßb=ßc Atop=2(V 2-l)\ß \ /■^corr+ top
IV

ßa^ßb^ßc t̂op-f^geom* VA corr +  (A top + A geom)2

7 N̂ L(ClF C)n T OJß ^  /+ (°

c ----- c-------- c--------C-----C0 (II)1 ß , ß 2nd s

ß ßKc b

(III)

■ ■ O O
(iv)

Abb. 1. Formelübersicht. (I) sind Kationen, (II), (III) und 
(IV) elektrisch neutrale Verbindungen.

* Auch a, co-substituierte Polyene mit gerader Zahl von 
Methingruppen.

1 H. O. Wirth, in Luminiscences of Org. and Inorg. Mate­
rials, ed. H. P. Kallmann u. G. M. Spruch, John Wiley, 
New York 1962.

2 N. Suzuki, Bull. Chem. Soc. Japan 33, 109 [I960].
3 A. E. Gillam u. D. H. Hey, J. Chem. Soc. London 1939, 

1170; A. E. Gillam u. E. S. Stern, An Introduction to 
Electronic Absorption Spectroscopy in Org. Chemistry, Ar­
nold, London 1962.

4 R. C. Jonson, in Pade Approximants and their Application, 
ed. P. R. Graves-Morris, Acad. Press, London 1973, p. 53.

5 0. E. Polansky u. N. N. Tyutyulkov, Micro-Symposium 
Graph-Theory in Chemistry, Mülheim a. d. Ruhr, Mai 
1975; Match No. 3 (in Vorbereitung).

6 J. Koutecky u. R. Zahradnik, Coll. Czech. Chem. Comm. 
25, 811 [I960].

7 H. C. Longuet-Higgins u. L. Salem, Proc. Roy. Soc. Lon­
don A 251, 172 [1959].

8 L. Salem u. H. C. Longuet-Higgins, Proc. Roy. Soc. London
A255,435 [I960].

9 N. N. Tyutyulkov, O. E. Polansky u. J. Fabian. Z. Natur­
forsch. 30 a, 1308 [1975].

10 0. E. Polansky, N. N. Tyutyulkov u. J. Fabian (in Vorbe­
reitung) .

11 0. Bastiansen, Acta Chem. Scand. 3, 408 [1949] : A. Al­
menningen u. O. Bastiansen, Klg. Norske Videns Selsk. 
Skifter 4 [1958].

12 N. Tyutyulkov, C. R. Acad. Sei. Paris, Serie C 227, 949 
[1973].

13 N. Tyutyulkov, Int. J. Quantum Chem. 9, 683 [1975].
14 N. A. Popov, J. Struktur Chemie (USSR) 9, 875 [1968].
15 A. A. Ovchinnikov, I. I. Ukrainski u. G. F. Kwenzel, Fort­

schritte d. phys. Wissensch. (USSR) 10, 81 [1972].
16 J. Hubbard. Proc. Roy. Soc. London A 276, 283 [1963].
17 J. A. Bitchkov. L. P. Gorkov u. A. Djalochinski. J. Exp. u. 

Theoret. Phys. (USSR) 34,739 [1965].
18 N. Tyutyulkov. O. E. Polansky u. J. Fabian, Theor. Chim. 

Acta (Berl.) 38, 1 [1975].



N. N. Tyutyulkov und 0. E. Polansky • II. Bandstruktur der p-Polyphenyle 495

18 C. A. Coulson u. A. Golebiewski, Proc. Roy. Soc. London 
78, 1319 [1961].

20 H. A. Pohl, in Organic Semiconductors, ed. J. J. Brophy u. 
J. W. Buttery, Macmillan, New York 1962, p. 146.

21 H. Kuhn, J. Chem. Phys. 17, 1198 [1949].
22 M. J. S. Dewar, J. Chem. Soc. London 3544 [1952].
23 H. Labhart, J. Chem. Phys. 27, 957 [1957].
24 C. Trie, J. Polymer Sei. Part C 29, 119 [1970],
25 J. Paldus u. J. Cizek, Phys. Rev. A 2, 2268 [1970].

26 N. A. Popov, in Theory of Electronic Shells of Atom and 
Molecules, Rep. Int. Symp. Vilnius, Minits, Vilnius 1971, 
p. 183.

27 Y. Mizuno u. T. Izuyma, Progr. Theor. Phys. 21, 593
[1959].

28 T. Izuyma, Progr. Theoret. Phys. 22, 681 [1959].
29 A. W. Tulub, J. Exp. u. Theoret. Phys. (USSR) 45, 1450

[1963],
30 E. E. Nikitin, in Probleme d. Quantenchemie (russ.), Hrsg. 

M. G. Weselov, Universitätsverlag, Leningrad 1963, p. 100.


